On the system of two difference equations of exponential form: xn+1 = a + bxn-1e-yn, yn+1 = c + dyn-1e-xn

نویسندگان

  • Garyfalos Papaschinopoulos
  • M. A. Radin
  • Christos J. Schinas
چکیده

It is the goal of this paper to study the boundedness, the persistence and the asymptotic behavior of the positive solutions of the system of two difference equations of exponential form xn+1 = a + bxn−1en , yn+1 = c + dyn−1en , where a, b, c, d are positive constants, and the initial values x−1, x0, y−1, y0 are positive real values. © 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global asymptotic behavior of solutions of an exponential type systems of difference equations

In this paper we study the boundedness, the persistence and the asymptotic behavior of the positive solutions of the following systems of two difference equations of exponential form: xn+1 = α+ βe−yn γ + xn−1 , yn+1 = δ + e−xn ζ + yn−1 , where α, β, γ, δ, , ζ are positive constants and the initial values x−1, x0, y−1, y0 are positive constants. ∗Speaker

متن کامل

On the System of Two Nonlinear Difference Equations

We study the oscillatory behavior, the periodicity and the asymptotic behavior of the positive solutions of the system of two nonlinear difference equations xn+1 = A+ xn−1/yn and yn+1 =A+yn−1/xn, where A is a positive constant, and n= 0,1, . . . .

متن کامل

ON THE SYSTEM OF RATIONAL DIFFERENCE EQUATIONS xn+1=f(xn,yn-k), yn+1=f(yn,xn-k)

We study the global asymptotic behavior of the positive solutions of the system of rational difference equations xn+1 = f (xn, yn−k), yn+1 = f (yn,xn−k), n = 0,1,2, . . . , under appropriate assumptions, where k ∈ {1,2, . . .} and the initial values x−k,x−k+1, . . . ,x0, y−k, y−k+1, . . . , y0 ∈ (0,+∞). We give sufficient conditions under which every positive solution of this equation converges...

متن کامل

On a Higher-order System of Difference Equations

Here we study the following system of difference equations xn = f −1 ( cnf(xn−2k) an + bn ∏k i=1 g(yn−(2i−1))f(xn−2i) ) , yn = g −1 ( γng(yn−2k) αn + βn ∏k i=1 f(xn−(2i−1))g(yn−2i) ) , n ∈ N0, where f and g are increasing real functions such that f(0) = g(0) = 0, and coefficients an, bn, cn, αn, βn, γn, n ∈ N0, and initial values x−i, y−i, i ∈ {1, 2, . . . , 2k} are real numbers. We show that t...

متن کامل

Asymptotic Behavior of a System of Linear Fractional Difference Equations

where the parameters a, b, d, and e are positive numbers and the initial conditions x0 and y0 are arbitrary nonnegative numbers. In a modelling setting, system (1.1) of nonlinear difference equations represents the rule by which two discrete, competitive populations reproduce from one generation to the next. The phase variables xn and yn denote population sizes during the nth generation and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical and Computer Modelling

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2011